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Abstract

In-Context Learning (ICL) has emerged as a
powerful paradigm for adapting Large Lan-
guage Models (LLMs) to new tasks without
gradient updates. While recent advances in
long-context models have enabled a shift from
few-shot to many-shot ICL, achieving perfor-
mance comparable to fine-tuning, research has
largely focused on classification tasks. In con-
trast, the behavior of Chain-of-Thought (CoT)
prompting, which elicits complex reasoning, re-
mains underexplored in many-shot settings. We
present a comprehensive analysis of many-shot
in-context CoT learning, revealing fundamen-
tal differences from traditional classification-
based ICL. Our findings show that CoT per-
formance in many-shot settings deviates no-
tably from earlier observations. In addition,
demonstration selection based on input sim-
ilarity, which is a common heuristic in ICL,
becomes ineffective under the CoT paradigm.
Counterintuitively, our experiments show that
the quality of the reasoning chain, as measured
by its ground-truth correctness, is not the pri-
mary factor for success. Instead, we observe a
consistent performance hierarchy where model-
self-generated CoTs with incorrectness outper-
form those with human-verified, correct rea-
soning. This suggests that the effectiveness
of many-shot CoT prompting is driven less by
demonstration quality and more by alignment
with the LLM’s internal reasoning processes.
Our findings challenge prevailing assumptions
and underscore the need for new strategies tai-
lored to the unique dynamics of many-shot CoT
learning.

1 Introduction

In-Context Learning (ICL), where Large Language
Models (LLMs) are prompted with a sequence of
input-output demonstrations and asked to produce
predictions for new inputs without any gradient up-
dates, has gained significant attention. Research
has extensively investigated its benefits (Sorensen

et al., 2022; An et al., 2023; Mavromatis et al.,
2023) and underlying mechanisms (Min et al.,
2022; von Oswald et al., 2023; Deutch et al., 2024).
A substantial body of work has focused on enhanc-
ing ICL, including further pre-training models for
improved ICL capability, developing strategies for
demonstration selection, and exploring the transi-
tion from few-shot to many-shot learning. While
early work focused on few-shot ICL, recent ad-
vances in scaling context windows have made it
possible to explore many-shot ICL, where dozens
to hundreds or even more demonstrations can be
provided, allowing performance comparable to fine-
tuning (Agarwal et al., 2024; Bertsch et al., 2025;
Baek et al., 2025). However, the majority of these
studies focus on classification-oriented ICL, where
tasks are relatively shallow and answers are directly
inferred from patterns in the demonstrations.

In parallel, there has been growing interest in
chain-of-thought (CoT) prompting, a technique that
improves reasoning tasks by encouraging models
to generate intermediate reasoning steps before ar-
riving at a final answer (Kojima et al., 2022). While
CoT has shown strong performance in few-shot set-
tings (Zhang et al., 2023; Wei et al., 2022; Luo
et al., 2023), its behavior in many-shot in-context
learning remains underexplored. Crucially, in the
case of ICL with CoT, most prior work directly ap-
plies the few-shot paradigm without delving deeply
into the underlying mechanisms. This raises sev-
eral critical questions.

1. What happens in the many-shot scenario: does
performance scale monotonically, or does it
plateau or even degrade?

2. Is in-context CoT fundamentally different
from ICL with a single label?

3. What correlating factors govern the effective-
ness of many-shot CoT, and can previous



demonstration selection strategies (e.g., based
on semantic similarity) be applied directly?

This gap is significant in light of the growing
context lengths supported by LLMs and the emerg-
ing concept of test-time scaling and DeepResearch.
Scaling in test-time enables LLMs to refine their
responses without parameter updates during in-
ference, through paradigms such as sequential re-
vision and parallel sampling (Snell et al., 2025).
Prior works have explored inference-time align-
ment methods with ICL (Lin et al., 2024; Li et al.,
2025). Li et al. (2025) proposes parallel sampling
for sequential refining and shows that increasing
the search width of sampled responses in in-context
consistently enhances the performance, demon-
strating the potential of incorporating in-context
demonstrations in enhancing the LLM capability
during inference. Yet it remains unclear whether
in-context CoT similarly benefits from longer con-
texts, or whether it introduces new challenges due
to the complexity of reasoning chains.

In this work, we present a comprehensive anal-
ysis of many-shot in-context CoT learning, com-
paring its behavior with traditional classification-
based ICL and evaluating its effectiveness under ex-
tended context lengths. Our study identifies several
fundamental differences between CoT and classi-
fication ICL under many-shot settings. We find
that, in contrast to many-shot ICL in tasks without
involving CoT (Bertsch et al., 2025; Baek et al.,
2025), the performance of in-context CoT is highly
sensitive to demonstration ordering and selection.
For demonstration selection, unlike traditional ICL,
similarity no longer serves as a reliable signal, high-
lighting the need for further investigation specif-
ically for in-context CoT. These findings suggest
that many-shot CoT learning is governed by differ-
ent dynamics than those observed in traditional ICL.
To address these challenges, we investigate factors
correlated with in-context CoT performance and
find that constructing LLM-aligned CoT demon-
strations stabilizes its performance. Our results
show that the quality of the provided CoT is unex-
pectedly not a critical factor. We observe a clear hi-
erarchy where demonstrations with self-generated,
incorrect CoTs lead to the best performance outper-
forming ground-truth human-verified CoTs. Adopt-
ing CoTs generated by a stronger, more advanced
LLM, on the other hand, results in a lower accuracy.
This suggests that the mechanism behind many-
shot CoT is not merely about providing higher-

quality examples, but is related to the alignment to
LLM.

2 Mysteries of many-shot ICL

2.1 Experiment Setup
Tasks. Previous studies in many-shot (Li et al.,
2024; Bertsch et al., 2025) lacks exploration
in the reasoning tasks. Experiments are con-
ducted with a diverse type of tasks, includ-
ing traditional classification tasks (i.e., Super-
GLUE (Wang et al., 2019) with a narrow label
space; NLU (nlu, 2021), TREC (Hovy et al., 2001)
and BANKING77 (Casanueva et al., 2020) with
significantly larger label space), mathematical rea-
soning (i.e., GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021)).

ICL Settings. For the reasoning tasks, the in-
clusion of CoT is natural. Hoping to provide the
complete picture also for the classification tasks,
we also adopt the LLM-generated CoT for the clas-
sification tasks.

• Traditional ICL. An instance consists of an
input-output pair (x,y). With n in-context
demonstrations provided, the LLM processes
the input as LLM(x′ | {(xi, yi)}ni=1) to gen-
erate y′. Since the token length of individ-
ual instances is relatively small, current open-
source LLMs can easily handle hundreds or
even thousands of examples during evalua-
tion.

• In-context CoT. An instance consists of an
input-CoT-output triplet (x, C, y). With
n in-context demonstrations provided, the
LLM processes the input as LLM(x′ |
{(xi, Ci, yi)}ni=1) to generate y′. Since the
token length of individual instances can be
significantly larger, depending on the token
length of C, current open-source LLMs are
typically limited to evaluating only around
hundreds of examples.

LLMs Studied. Building on previous studies that
highlight the limitations of long-context LLMs
in ICL (Li et al., 2024; Bertsch et al., 2025)
and given the recent advancements in instruction-
tuned models with extended context windows in
about 130K tokens, we conduct experiments with
LLaMA 3.1 (Llama-3.1-8B-Instruct), LLaMA 3.3
(Llama-3.3-70B-Instruct) (MetaAI, 2024), Qwen
2.5 (7B) (Qwen2.5-7B-Instruct), Qwen 2.5 (14B)



(Qwen2.5-14B-Instruct), Qwen 3 (8B) (Qwen3-8B),
Qwen 3 (14B) (Qwen3-14B) (Qwen et al., 2025),
enabling analysis across different LLM architec-
tures and model sizes. To enable the processing of
long context to the 131k token level for the Qwen
family, we modified the config file and add the
rope_scaling fields.

Unlike prior studies that focus primarily on clas-
sification tasks with constrained decoding (Bertsch
et al., 2025), we adopt a generative framework for
both classification and generation tasks. Specif-
ically, we formulate all tasks as text generation
problems and evaluate model outputs using exact
match against reference answers or labels. This ap-
proach aligns with recent trends in LLM research,
where the emphasis has increasingly shifted toward
open-ended generation settings.

In many-shot in-context CoT learning, the num-
ber of tokens per demonstration can be substan-
tially larger than in traditional many-shot ICL due
to the length of CoT reasoning. For instance, when
comparing geometry task to BANKING77, the av-
erage demonstration length in the former is 30
times longer, averaged across the training set. To
maintain consistency with in-context CoT scaling,
we prompt with approximately 100-shot in-context
demonstrations in the following studies.

In addition, empirical results in the following
subsection show that even with the Qwen3 family,
model performance declines sharply beyond a cer-
tain number of tokens. This suggests limited ben-
efit in further increasing the number of in-context
demonstrations under current model constraints.
Under these considerations, our analysis in per-
formed on the scope of about a hundred demonstra-
tions.

2.2 Results
To enable a direct comparison of performance
across tasks with varying accuracy ranges, we nor-
malize all results, as illustrated in Figure 1. De-
tailed results are provided in Appendix B.

As shown in the figure, there is a significant
difference between the two types of tasks: classifi-
cation tasks exhibit a consistent pattern of steady
improvement as the number of demonstrations in-
creases, whereas math reasoning tasks show fluc-
tuating or even declining performance. As pointed
out by Li et al. (2024), LLMs often struggle to learn
effectively from long in-context examples.

With the advancement of LLMs, subsequent
studies have shown that learning from long-context

(a) Llama-3.1-8B-Instruct

(b) Qwen2.5-7B-Instruct

(c) Qwen2.5-14B-Instruct

Figure 1: Performance comparison using normalized
results between classification tasks (in warm colors) and
math reasoning tasks (in cool colors). The x-axis rep-
resents normalized accuracy, while the y-axis indicates
the number of in-context demonstrations.

Figure 2: Performance on randomly sampled subset of
math reasoning tasks using Llama-3.3-70B-Instruct.

classification tasks has become increasingly effec-
tive (Agarwal et al., 2024; Bertsch et al., 2025).
While LLMs demonstrate strong many-shot learn-
ing capabilities in classification tasks, their perfor-
mance in reasoning-intensive tasks using in-context
chain-of-thought (CoT) remains limited. This limi-
tation persists even in recent LLMs: both the Qwen
2.5 and LLaMA 3.1 families show difficulty in han-
dling long-context CoT settings. To further investi-



(a) Qwen3-8B

(b) Qwen3-14B

Figure 3: Performance on randomly sampled subset of
math reasoning tasks using Qwen 3 family.

gate, we evaluate a larger model, LLaMA-3.3-70B.
As shown in Figure 2, even with this increased pa-
rameter size, the model is still unable to effectively
learn from the provided demonstrations.

The recently released Qwen 3 family demon-
strates a general trend of steadily increasing per-
formance, as shown in Figure 3. To explore the
limits of their capability, we leveraged its extended
context window, pushing to the maximum token
limit of 131k. This allowed for the inclusion of
up to 256 in-context demonstrations in the geom-
etry task, with each demonstration comprising ap-
proximately 450 tokens. However, we observe a
severe and progressive performance degradation
beyond a certain threshold of demonstrations. For
instance, on the geometry task, the accuracy of
Qwen3-14B progressively degrades from 64.92%
(with 128 demonstrations) to 55.74% (with 181
demonstrations), before collapsing to 12.32% (with
256 demonstrations). A similar pattern is observed
with LLaMA 3.1 and Qwen 2.5 (8B), while Qwen
2.5 (14B) exhibits a less severe, though still present,
fluctuation in performance.

Consequently, despite the Qwen 3 family’s ro-
bust overall performance, our experiments show
that most LLMs struggle to effectively learn from
a large number of in-context Chain-of-Thought
demonstrations. This consistent failure mode
across model families raises a research question:
can any strategies be adopted to enhance CoT per-
formance in long-context reasoning tasks?

Figure 4: The original performance with the error band
computed across five random orders shuffled with a
unified set of random seeds under Qwen 2.5 (14B).
geometry∗ is evaluated with another randomly sam-
pled in-context CoT demonstration set.

2.3 Is LLM truly incapable to be benefitted
from in-context CoT demonstrations?

While the recently released models no longer strug-
gle with the large space classification tasks as-
sessed by Li et al. (2024), new challenges arrived
with the inclusion of the reasoning chain. To
further investigate the effectiveness of in-context
CoT, we conduct a focused analysis on three tasks
(i.e., GSM8K, geometry and number_theory) with
Qwen 2.5 (14B). Our analysis proceeds along two
strategies:

1. Demonstration Order Sensitivity: We ran-
domly shuffle the order of demonstrations five
times to examine whether an ordering that fa-
cilitates better in-context CoT exists.

2. Demonstration Choice Sensitivity: We ran-
domly sample alternative sets of in-context
examples to assess whether performance im-
provements can be attributed to the choice of
demonstrations.

The results are shown in Figure 4, presenting
the original performance trends and the error band



of mean±standard deviation across five accuracies
with shuffled orders. To ensure experimental fair-
ness, a fixed set of seeds is randomly sampled to
perform the order shuffles. The same seeds are con-
sistently applied across all configurations, spanning
different LLMs, numbers of in-context examples,
and tasks to maintain controlled variability.

For the GSM8K and number_theory tasks, an
increasing trend is observed with the first strat-
egy. Notably, although the original trend for num-
ber_theory was decreasing, both the upper-bound
performance and the average performance across
five orderings show an increasing trend. These in-
dicate a sensitivity to the order of demonstrations.

In the geometry task, the same trend is observed
after the initial attempt of applying the second strat-
egy, continuing up to 64 demonstrations. The sub-
sequent decline in performance can be attributed to
the context length exceeding 40k tokens, which ne-
cessitates the use of RoPE scaling. This indicates a
sensitivity to the selection of demonstrations.

Effect with order shuffle. Bertsch et al. (2025);
Baek et al. (2025) found that the impact of demon-
stration ordering diminishes as the number of
demonstrations increases. Building on this insight,
we further explore order sensitivity in in-context
chain-of-thought (CoT) prompting. Specifically,
we calculate the standard deviation across five ac-
curacy scores obtained from randomly shuffled
demonstration orders. Consistent with prior find-
ings, classification tasks (e.g., NLU and BANK-
ING77) show a clear pattern, the standard deviation
in performance decreases as more demonstrations
are added. This suggests that additional examples
enhance stability and reduce sensitivity to ordering
effects in these task types.

In contrast, for reasoning tasks, the standard de-
viation either fluctuates unpredictably or gradually
increases with more demonstrations. This implies
that, unlike classification tasks, adding more exam-
ples in reasoning tasks may introduce additional
variance and lead to less stable performance when
using in-context CoT prompting.

2.4 Rethinking the role of similarity

Previous research in in-context learning has shown
that retrieving semantically similar examples often
enhances model performance (Liu et al., 2022; Wu
et al., 2023; Kapuriya et al., 2025). To further inves-
tigate this claim, we include the BANKING77 clas-
sification task as a control experiment. Specifically,

Figure 5: Standard deviation across five order sampling.

we construct two unified sets of in-context exam-
ples: one comprising the most semantically similar
examples and the other comprising the most dissim-
ilar examples to the test set. Similarity is measured
by computing the cosine similarity between ques-
tion embeddings, averaged across the entire test
set with a sentence transformer (all-mpnet-base-v2).
Approximately 250 samples are retrieved from the
training set to form the candidate pool for con-
structing the similar and dissimilar example sets.
We evaluate performance on both the BANKING77
task and the reasoning tasks introduced in Section
2.3 with Qwen 2.5 (14B).

The results are presented in Figure 6. Since our
retrieval strategy is based on the global similarity
to the full test set rather than per-instance similarity,
the benefits of similarity-based retrieval may not be
as apparent in few-shot ICL. However, in settings
with more than 20 in-context examples, the similar
set consistently yields a better performance over
the dissimilar in BANKING77, with the area in be-
tween highlighted in green. This aligns with prior
findings in classification-based ICL. In contrast, we
observe the opposite trend for the three reasoning
tasks. With the increasing number of in-context
CoT provided, the dissimilar set consistently out-
performs the similar set, showing prior findings in
ICL cannot be extended to in-context CoT.

3 Correlating Factor Influencing
In-Context CoT Success

A key question in analyzing the performance of
in-context CoT reasoning will be whether its suc-
cess directly correlates with the model’s task un-
derstanding or whether other factors play a more
significant role. To investigate this, we create



Figure 6: Performance with similarity(sim) and dissim-
ilar(dis) sets with Qwen 2.5 (14B). The area between
the two sets is filled with colors, indicating the relative
performance at each point.

two 4-option multiple-choice question answering
(MCQA) tasks and found that in-context CoT may
correlate more with data distribution than task un-
derstanding in Appendix A.

3.1 Experiment Setup

Tasks. We follow the previous settings and se-
lect a subset of math reasoning tasks for further
analysis, including geometry, number theory, and
GSM8K. With wider application of LLMs into real-
life tasks, especially with the development of Deep
Research (Huang et al., 2025; Yu et al., 2025), the
rationale behind comprehensive reasoning tasks
also matters. Therefore, apart from the math prob-
lems and classification tasks, we additionally stud-
ied LLM performance that required narrative rea-
soning with DetectiveQA (Xu et al., 2025). Since
DetectiveQA provides the corresponding evidence
and the reasoning chain for deriving the answer
based on the evidence. For each instance, the ev-
idence is provided as part of the question. The
corresponding CoT will be the derivation labelled
with “-1”.

LLMs and Tasks Studied We evaluate with
LLaMA 3.1 and Qwen 2.5 (14B) on three math rea-
soning benchmarks (i.e., GSM8K, number_theory,
and geometry) and evaluate with Qwen 3 (8B)

and Qwen 3 (14B) on number_theory and Detec-
tiveQA.

Model-CoT alignment. We investigate whether
the efficacy of in-context Chain-of-Thought (CoT)
learning is more significantly influenced by the log-
ical quality of the reasoning or its alignment with
the LLM’s own generative distribution. To this
end, we generate CoT demonstrations by prompt-
ing the LLM on the training set, rather than using
the dataset’s ground-truth CoT. These generated
CoT are then used as the in-context examples dur-
ing evaluation over the test set.

To investigate whether CoT quality or distribu-
tional alignment plays a more significant role in
performance, we construct three distinct demon-
stration sets to isolate these factors:

1. The Correct Set (cr): Samples where the
model’s generated answer is correct.

2. The Incorrect Set (wr): Samples where the
model’s generated answer is incorrect.

3. The First Set (first): The initial generation for
each instance, regardless of accuracy.

Each LLM is prompted 10 times per training
instance using a temperature of 1.0 for diversity.
During the 10 times of prompting, if the predicted
answer is correct, we include the corresponding
CoT and generated answer in the cr set; otherwise,
it is placed in the wr set. The first generation is
included in the first set. These resulting demon-
stration sets are compared against the original CoT
(i.e., origin) provided within the datasets.

Due to the high accuracy of both LLMs on
GSM8K, it is difficult to obtain incorrect outputs
even at a high temperature. Thus, the wr set is only
constructed for number_theory and geometry.

3.2 Result
Surprisingly, as illustrated in Figure 7, the wr set
with wrong answers and presumably flawed reason-
ing always outperforms the original CoT and per-
forms comparably to the cr set across both LLMs
and both tasks. This shows the effectiveness of
having LLM-aligned in-context CoT. Additionally,
with the self-generated CoT, both LLMs suffer sig-
nificantly less from the sudden drop and great fluc-
tuation issues, especially for LLaMA 3.1.

Moreover, the use of self-generated CoT signif-
icantly mitigates the issues of performance insta-
bility and sudden accuracy drops observed with



the origin, an effect particularly pronounced for
LLaMA 3.1. Collectively, these results suggest that
the distributional characteristics of the in-context
examples (i.e., their alignment with the LLM’s own
generative patterns) exert a more substantial influ-
ence on stable CoT prompting than the conven-
tional metric of quality, defined here as the pres-
ence of a correct final answer.

In the meantime, since the wr and cr sets were
constructed by sampling model outputs, an instance
can have all correct or all incorrect answers across
all runs, risking an empty instance. To ensure ro-
bustness, we perform the analysis using the first set
with guaranteed no emptyness.

Results in figure 8 reinforce the initial find-
ing. The first set again outperforms the original
CoT in both the number theory and DetectiveQA
tasks, suggesting data distribution is a more influ-
ential factor than quality for stable in-context CoT
prompting.

Does “better” CoT give better and stable perfor-
mance? To further assess the role of CoT quality,
we investigate whether better CoT from a better-
performing model can improve the performance
of a weaker one. Specifically, we prompt LLaMA
3.1 using CoT generated by Qwen 2.5 (14B) in
Figure 7 and Qwen 3 (8B) using CoT generated
by Qwen 3 (14B) in Figure 8, where Qwen 2.5
(14B) and Qwen 3 (14B) both show a better or
comparable performance with the baseline.

As shown in the olive line in Figure 7 and 8,
while LLaMA 3.1 and Qwen 3 (8B) does bene-
fit from higher-quality CoT with a performance
increase in geometry and DetectiveQA at the be-
ginning and at certain shots of in-context examples,
the model still suffers significantly from instability,
including occasional sudden performance drops
and great fluctuations. This implies that while
higher-quality CoT may enhance performance, but
likely to result in greater instability without good
in-context data distribution (i.e., not well-aligned
with the evaluation LLM). This further reinforces
our finding that data distribution is a more crucial
factor in successful in-context CoT prompting.

4 Related Works

4.1 Many-shot ICL
With studies enabling LLMs to handle longer con-
text lengths (Peng et al., 2024; Han et al., 2024;
Ding et al., 2024), Agarwal et al. (2024) introduce
the concept of many-shot ICL, which incorporates

a significantly larger number of in-context demon-
strations. Their results show a comparable perfor-
mance to fine-tuning across various types of tasks.
Subsequent studies (Li et al., 2024; Bertsch et al.,
2025) investigate the effectiveness of many-shot
ICL in open-source LLMs and examine its distinct
characteristics compared to few-shot ICL. Bertsch
et al. (2025); Baek et al. (2025) report reduced sen-
sitivity to demonstration selection, and Baek et al.
(2025) highlight increased vulnerability to noisy
examples in complex tasks. However, these works
primarily focus on traditional classification-based
ICL without exploring in-context CoT reasoning.
Given the growing attention to the reasoning capa-
bilities of LLMs and the demonstrated effective-
ness with a large number of in-context demonstra-
tions at test-time in enhancing model performance
(Li et al., 2025), it becomes crucial to understand
how many-shot CoT behaves under long-context
settings. Our study provides a comprehensive eval-
uation of many-shot in-context CoT and investi-
gates their unique characteristics, revealing devi-
ations from the previously observed patterns in
traditional many-shot ICL.

4.2 Chain-of-Thought

Prior studies have focused on modifying and en-
hancing the Chain-of-Thought (CoT) prompting
paradigm to improve reasoning performance in
large language models. Program of Thoughts (PoT)
(Chen et al., 2023) introduces structured program-
ming to represent the reasoning process more sys-
tematically. Tree-of-Thoughts (ToT) (Yao et al.,
2023) proposes a tree-structured reasoning frame-
work that enables the model to explore different
reasoning paths. rStar-Math (Guan et al., 2025)
decomposes complex reasoning problems and ex-
plores diverse reasoning trajectories using Monte
Carlo Tree Search (MCTS) at test time, achiev-
ing significant improvements on mathematical rea-
soning benchmarks. In the meantime, only a few
studies have explored the application of CoT in
ICL. Dr.ICL (Luo et al., 2023) extends retrieval-
augmented ICL to CoT prompting, demonstrat-
ing notable gains in mathematical reasoning tasks.
However, these works typically operate under one-
shot or few-shot ICL settings, leaving the potential
of in-context CoT across extended context lengths
largely underexplored. Our work addresses this
gap by investigating how CoT prompting scales
with increasing context length.



(a) Llama-3.1-8B-Instruct (b) Qwen2.5-14B-Instruct

Figure 7: Performance of two sets of self-generated in-context CoT, including the set filtered with only correct
answer(cr) and the set filtered with only wrong answer(wr). crqwen14b is prompting the LLaMA model with the
in-context CoT generated by Qwen 2.5 (14B).

(a) Qwen3-8B (b) Qwen3-14B

Figure 8: Performance of the first set of self-generated in-context CoT. crqwen3(14b) is prompting the Qwen 3 (8B)
model with the in-context CoT generated by Qwen 3 (14B).

5 Conclusion

In this study, we provided a thorough investiga-
tion into the behavior of in-context CoT learning in
extended context settings and its comparison with
traditional ICL approaches for classification tasks.
Our analysis uncovered several unique challenges
faced by in-context CoT learning, particularly its
sensitivity to factors such as demonstration order-
ing and selection. This contrasts with prior find-
ings in many-shot ICL, where such sensitivities
are found to be less pronounced. Notably, we find
that retrieving similar demonstrations does not en-
hance in-context CoT performance, diverging from
established results in classification-based ICL.

Our empirical findings also demonstrate that task
performance in many-shot in-context CoT is more
influenced by the underlying data distribution more
than task comprehension. Further experiments
show that aligning in-context CoT demonstrations
with LLMs’ internal priors and learned reasoning
trajectory can lead to more stabilized and consistent
performance. Our work highlights the difference
between in-context CoT with previous studies and
the need for tailored strategies in leveraging in-
context CoT learning, helping to lay the ground for
further exploration of its potential and limitations.



Limitations

Due to the computational cost and performance
limitations of LLMs in long in-context CoT rea-
soning, our study is limited to approximately 100
examples. While LLMs like Qwen 2.5 and LLaMA
3.1 can handle up to 131K and 128K context to-
kens, respectively, their performance in in-context
CoT reasoning declines gradually beyond a cer-
tain threshold of context tokens, making exploring
beyond 100 shots in this setting insignificant.
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Matthew Henderson, and Ivan Vulić. 2020. Efficient
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A Correlating Factor Influencing
In-Context CoT Success

Experiment Settings. The experiments were
conducted on two datasets (i.e., BANKING77 and
GSM8K), both exhibit an overall trend of im-
provement as the number of in-context examples
increases, despite some fluctuations in GSM8K.
The evaluation is performed on the two smaller
LLMs ( LLaMA 3.1, Qwen 2.5 (7B)). From the
test set, the first 300 instances are retrieved to
make a comparable evaluation to the testing ac-
curacy. In each retrieved instance, the latter
half of its question is masked and an external
LLM, LLaMA-3.3-70B-Instruct is used to gen-
erate continuations for the masked questions to
evaluate task understanding. The MCQA tasks are
constructed under two distinct conditions:

1. Task A: LLaMA 3.3 is instructed to avoid
the topic of the original task and generate
each continuations in entirely different do-
mains. This is to avoid LLM from locating
the ground-truth continuation easily with only
the option information. The clear differentia-
tion between the domains of options indicates
the task understanding. With more in-context
examples, the accuracy of Task A is expected
to continuously increase or plateau after a cer-
tain threshold. Examples of Task A are shown
in Appendix D.1.

2. Task B: LLaMA 3.3 is allowed to generate
continuations without the above restrictions,
leading to highly semantically similar option
sets with different expressions. Computing
the averaged pairwise cosine similarity among
the 4 options, Task B has a mean similarity
score of 0.726, which is significantly higher
than Task A of 0.471. Examples of Task B are
shown in Appendix D.2.

For human evaluation, a university graduate stu-
dent is invited to answer 120 sampled questions
provided with the in-context examples from the
training set. Humans can easily infer the task ob-
jectives and identify the correct option by aligning
it with the task domain of the training examples.
Results showed that humans achieved 93.33% ac-
curacy in Task A, significantly higher than their
performance of 46.67% accuracy in Task B.

Result. In the BANKING77 dataset, we observed
a clear positive trend in LLM performance as the

number of in-context examples increased. When
provided with in-context CoT with {question, CoT,
answer}, LLMs are prompted to predict the correct
continuation of masked questions. Surprisingly, as
shown in Table 1, Task B consistently exhibited
a higher spearman rank correlation with task ac-
curacy than Task A across all LLMs. This trend
contrasts with human performance.

To validate these findings in the reasoning task,
we conducted the same experiment on the GSM8K
dataset, creating analogous MCQA tasks under the
same conditions. Same conclusion is drawn with
Task B demonstrating a significantly stronger corre-
lation with task accuracy compared to Task A. All
the correlations with Task B are statistically signifi-
cant, with a p-value smaller than 0.05. It indicates
in-context CoT correlates more to data distribution
than task understanding.

Task Correlation p-value

BANKING77
LLaMA A 0.3376 0.4135

B 0.8752 0.004

Qwen A 0.6412 0.0867
B 0.9140 0.001

GSM8K
LLaMA A 0.6190 0.1017

B 0.7075 0.0496

Qwen A 0.6337 0.0916
B 0.7933 0.0188

Table 1: Correlation between task accuracy and accu-
racy of the two constructed MCQA tasks.

B Prompt formatting and LLM
performance for each task

B.1 SuperGlue

We evaluate the Winograd Schema Challenge
(WSC) for coreference resolution, and the Choice
of Plausible Alternatives (COPA) for open-domain
commonsense causal reasoning. Both are format-
ted as a binary-label classification task. The prompt
for inference is presented in Figure 9 and 12, while
the evaluation result is shown in Figure 10 and 11
respectively.

B.2 TREC

We evaluate the Text REtrieval Conference (TREC)
Question Classification dataset with 50 fine class
labels. The prompt for inference is presented in
Figure 13, while the evaluation result is shown in
Figure 14.



Given a query, answer yes or no to the query.

The predicted answer must come from the demonstration examples with the exact format. The examples are
as follows:

Question: In the sentence “{text1}”, does the pronoun ‘{span2_text1}’ refer to {span1_text1}?
Answer: {answer1}
...
Question: In the sentence “{textn}”, does the pronoun ‘{span2_textn}’ refer to {span1_textn}?
Answer: {answern}

Now predict the answer for the following query:

Question: In the sentence “{texti}”, does the pronoun ‘{span2_texti’}’ refer to {span1_texti’}?

reply in the following format:
‘Answer: [yes | no]’

Figure 9: Prompt for WSC task

Figure 10: Performance on WSC

B.3 BANKING77

We evaluate the BANKING77 dataset with 77 fine-
grained intents in the banking domain. The prompt
for inference is presented in Figure 15, while the
evaluation result is shown in Figure 16.

B.4 NLU

We evaluate the NLU dataset with 68 fine-grained
intents in the conversational domain. The prompt
for inference is presented in Figure 17, while the
evaluation result is shown in Figure 18.

B.5 GSM8K

We evaluate the GSM8K dataset for grade school
math word problems. The prompt for inference is
presented in Figure 19, while the evaluation result
is shown in Figure 20.

B.6 MATH

We evaluate the Mathematics Aptitude Test of
Heuristics (MATH) dataset for mathematics com-
petition problems, including the question types
of counting_and_probability, prealgebra, geome-
try, precalculus, number_theory and algebra. The
prompt for inference is presented in Figure 21,
while the evaluation result is shown in Figure 22,
23, 24, 25, 26 and 27.

C Prompt for constructing MCQA Task
A and B

C.1 Task A

The prompt to LLaMA-3.3-70B-Instruct for cre-
ating Task A is shown in Figure 28.

C.2 Task B

The prompt to LLaMA-3.3-70B-Instruct for cre-
ating Task A is shown in Figure 29.



Figure 11: Performance on COPA

D Examples illustration of MCQA Task A
and B

D.1 Task A
Two example illustrations in Task A, constructed
for BANKING77 and GSM8K, are shown in Figure
30. The option highlighted in bold is the correct
continuation of the incomplete question (Q).

D.2 Task B
Two example illustrations in Task B, constructed
for BANKING77 and GSM8K, are shown in Figure
31. The option highlighted in bold is the correct
continuation of the incomplete question (Q).

E Prompt formatting for Task A and B

The unified prompt for inference is presented in
Figure 32.



Answer in A or B.

The predicted answer must come from the demonstration examples with the exact format. The examples are
as follows:

Premise: {premise1}
Question: What is the {question1} for this?
Options:
A. {choice11}
B. {choice21}
Answer: {answer1}

...

Premise: {premisen}
Question: What is the {questionn} for this?
Options:
A. {choice1n}
B. {choice2n}
Answer: {answern}

Now predict the answer for the following query:

Premise: {premisei}
Question: What is the {questioni} for this?
Options:
A. {choice1i}
B. {choice2i}

reply in the following format:
‘Answer: [A | B]’

Figure 12: Prompt for COPA task

Given a question, predict the label of the question. You can only make predictions from the following categories:
{LIST_OF_CATEGORIES}
Please predict the label of the FINAL question with the provided demonstration example queries as follows:

question: {question1}
label: {label1}
...
question: {questionn}
label: {labeln}

Now predict the answer for the following query:

question: {questioni}

reply in the following format:
‘label: [category_name]’

Figure 13: Prompt for TREC task



Figure 14: Performance on TREC

Given a question, predict the label of the question. You can only make predictions from the following categories:
{LIST_OF_CATEGORIES}
Please predict the intent category of the FINAL query with the provided demonstration example queries as follows:

service query: {question1}
intent category: {label1}
...
service query: {questionn}
intent category: {labeln}

Now predict the intent category for the following query:

service query: {questioni}

reply in the following format:
‘intent category: [category_name]’

Figure 15: Prompt for BANKING77 task

Figure 16: Performance on BANKING77



Given a question, predict the label of the question. You can only make predictions from the following categories:
{LIST_OF_CATEGORIES}
Please predict the intent category of the FINAL utterance with the provided demonstration example queries as follows:

utterance: {question1}
intent category: {label1}
...
utterance: {questionn}
intent category: {labeln}

Now predict the intent category for the following utterance:

utterance: {questioni}

reply in the following format:
‘intent category: [category_name]’

Figure 17: Prompt for NLU task

Figure 18: Performance on NLU

In the end of the response, add a summary ‘The answer is [answer].’

Q: {question1}
A: {CoT1} {answer1}
...
Q: {questionn}
A: {CoTn} {answern}

### Q: {questiont}
### A: Let’s think step by step.

Figure 19: Prompt for GSM8K task



Figure 20: Performance on GSM8K

Write a response that appropriately completes the request and wrap the final answer inside \\boxed{}.

Problem: {question1}
Solution: {CoT_with_answer1}
...
Problem: {questionn}
Solution: {CoT_with_answern}

### Problem: {questiont}
### Solution: Let’s think step by step.

Figure 21: Unified prompt for MATH task

Figure 22: Performance on counting_and_probability

Figure 23: Performance on prealgebra



Figure 24: Performance on geometry

Figure 25: Performance on precalculus

Figure 26: Performance on number_theory



Figure 27: Performance on algebra

BANKING77:
Task: Task: Given an incomplete customer query, generate 6 unqiue and diverse continuations to complete the question.
Ensure:
- The continuations avoid topics related to banking or customer service queries to ensure diversity.
- Each continuation explores different contexts or domains to reflect a variety of possibilities. Please diversify your
generation with the provided example.
Input:
Q: {masked_question}

Output:
1. {groundtruth}
2.
3.
4.
5.

GSM8K:
Task: Given an incomplete question, generate 6 unique and diverse continuations to complete the question. Ensure:
- The continuations avoid topics related to math or grade school level difficulty to ensure diversity.
- Each continuation explores different contexts or domains to reflect a variety of possibilities. Please diversify your
generation with the provided example.
Input:
Q: {masked_question}

Output:
1. {groundtruth}
2.
3.
4.
5.

Figure 28: Prompt for constructing Task A



Given an incomplete math question, generate a 6 version of continuation to complete the question. Ensure that the
number of tokens in your completion is approximately equal to the number of tokens in the provided incomplete
question.
Input:
Q: {masked_question}

Output:
1. {groundtruth}
2.
3.
4.
5.

Figure 29: Unified prompt for constructing Task B

BANKING77:
Q: When traveling, can I auto

Options:
A. track my daily expenses and stay within a set budget using a travel app?
B. navigate through unfamiliar cities using augmented reality maps?
C. unlock my hotel room door using a digital key on my smartwatch?
D. top-up my card at certain times?

GSM8K:
Q: Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds, mealworms and
vegetables to help keep them healthy. She gives the chickens their feed in three separate meals. In the morning, she
gives her flock of chickens 15

Options:
A. automated feeding system that dispenses the exact amount of feed at each meal, reducing waste and saving time.
What are the potential advantages and disadvantages of using an automated feeding system for Wendi’s flock?
B. varieties of vegetables, such as kale and carrots, to supplement their diet and provide essential nutrients. How can
Wendi incorporate these vegetables into the chickens’ feed in a way that is both cost-effective and efficient?
C. cups of feed. In the afternoon, she gives her chickens another 25 cups of feed. How many cups of feed does she
need to give her chickens in the final meal of the day if the size of Wendi’s flock is 20 chickens?
D. local farm-to-table initiative, where she sells the eggs produced by her chickens to nearby restaurants and cafes.
What are some key marketing strategies that Wendi could use to promote her farm-to-table business and attract new
customers?

Figure 30: Examples illustration of Task A. The correct answer is highlighted in bold.



BANKING77:
Q: If I request that my funds

Options:
A. be withdrawn, what are the minimum requirements?
B. be held, what currencies do you use?
C. be converted, what is the exchange rate?
D. be deposited, what is the maximum limit?

GSM8K:
Q: Toulouse has twice as many sheep as Charleston. Charleston has 4 times as many sheep as

Options:
A. Seattle. What is the combined total of sheep in Toulouse, Charleston, and Seattle if Seattle’s sheep population is 10?
B. Seattle. How many sheep do Toulouse, Charleston, and Seattle have together if Seattle has 20 sheep?
C. Seattle. How many sheep are there in total in Seattle, Charleston, and Toulouse if Seattle has 15 sheep?
D. Seattle. If Seattle is home to 5 sheep, what is the total number of sheep in Charleston, Toulouse, and Seattle
altogether?

Figure 31: Examples illustration of Task B. The correct answer is highlighted in bold.

BANKING77:
Your task is to choose the best option from the four provided that completes the question.
Do NOT solve or answer the question; ONLY respond with the correct option label (A, B, C, or D).

service query: {question1}
intent category: {label1}
...
service query: {questionn}
intent category: {labeln}

Final query: {mcqa_question}
A. {optionA}
B. {optionB}
C. {optionC}
D. {optionD}

GSM8K:
Your task is to choose the best option from the four provided that completes the question.
Do NOT solve or answer the question; ONLY respond with the correct option label (A, B, C, or D).

Question: {question1}
Answer: {CoT1} {answer1}
...
Question: {questionn}
Answer: {CoTn} {answern}

Final Question: {mcqa_question}
A. {optionA}
B. {optionB}
C. {optionC}
D. {optionD}

Figure 32: Unified prompt for Task A and B
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